Flectra Guidelines¶
This page introduces the Flectra Coding Guidelines. Those aim to improve the quality of Flectra Apps code. Indeed proper code improves readability, eases maintenance, helps debugging, lowers complexity and promotes reliability. These guidelines should be applied to every new module and to all new development.
Warning
When modifying existing files in stable version the original file style strictly supersedes any other style guidelines. In other words please never modify existing files in order to apply these guidelines. It avoids disrupting the revision history of code lines. Diff should be kept minimal. For more details, see our pull request guide.
Warning
When modifying existing files in master (development) version apply those guidelines to existing code only for modified code or if most of the file is under revision. In other words modify existing files structure only if it is going under major changes. In that case first do a move commit then apply the changes related to the feature.
Module structure¶
Directories¶
A module is organized in important directories. Those contain the business logic; having a look at them should make you understand the purpose of the module.
data/ : demo and data xml
models/ : models definition
controllers/ : contains controllers (HTTP routes)
views/ : contains the views and templates
static/ : contains the web assets, separated into css/, js/, img/, lib/, …
Other optional directories compose the module.
wizard/ : regroups the transient models (
models.TransientModel
) and their viewsreport/ : contains the printable reports and models based on SQL views. Python objects and XML views are included in this directory
tests/ : contains the Python tests
File naming¶
File naming is important to quickly find information through all flectra addons. This section explains how to name files in a standard flectra module. As an example we use a plant nursery application. It holds two main models plant.nursery and plant.order.
Concerning models, split the business logic by sets of models belonging to a same main model. Each set lies in a given file named based on its main model. If there is only one model, its name is the same as the module name. Each inherited model should be in its own file to help understanding of impacted models.
addons/plant_nursery/
|-- models/
| |-- plant_nursery.py (first main model)
| |-- plant_order.py (another main model)
| |-- res_partner.py (inherited Flectra model)
Concerning security and access rights and rules two main files should be used.
First one is the definition of access rights done in a ir.model.access.csv
file. User groups are defined in <module>_groups.xml
. Access rules are
defined in <model>_security.xml
.
addons/plant_nursery/
|-- security/
| |-- ir.model.access.csv
| |-- plant_nursery_groups.xml
| |-- plant_nursery_security.xml
| |-- plant_order_security.xml
Concerning views, backend views should be split like models and suffixed
by _views.xml
. Backend views are list, form, kanban, activity, graph, pivot, ..
views. To ease split by model in views main menus not linked to specific actions
may be extracted into an optional <module>_menus.xml
file. Templates (QWeb
pages used notably for portal / website display) and bundles (import of JS and
CSS assets) are put in separate files. Those are respectively
<model>_templates.xml
and assets.xml
files.
addons/plant_nursery/
|-- views/
| | -- assets.xml (import of JS / CSS)
| | -- plant_nursery_menus.xml (optional definition of main menus)
| | -- plant_nursery_views.xml (backend views)
| | -- plant_nursery_templates.xml (portal templates)
| | -- plant_order_views.xml
| | -- plant_order_templates.xml
| | -- res_partner_views.xml
Concerning data, split them by purpose (demo or data) and main model. Filenames
will be the main_model name suffixed by _demo.xml
or _data.xml
. For instance
for an application having demo and data for its main model as well as subtypes,
activities and mail templates all related to mail module:
addons/plant_nursery/
|-- data/
| |-- plant_nursery_data.xml
| |-- plant_nursery_demo.xml
| |-- mail_data.xml
Concerning controllers, generally all controllers belong to a single controller
contained in a file named <module_name>.py
. An old convention in Flectra is to
name this file main.py
but it is considered as outdated. If you need to inherit
an existing controller from another module do it in <inherited_module_name>.py
.
For example adding portal controller in an application is done in portal.py
.
addons/plant_nursery/
|-- controllers/
| |-- plant_nursery.py
| |-- portal.py (inheriting portal/controllers/portal.py)
| |-- main.py (deprecated, replaced by plant_nursery.py)
Concerning static files, Javascript files follow globally the same logic as
python models. Each component should be in its own file with a meaningful name.
For instance, the activity widgets are located in activity.js
of mail module.
Subdirectories can also be created to structure the ‘package’ (see web module
for more details). The same logic should be applied for the templates of JS
widgets (static XML files) and for their styles (scss files). Don’t link
data (image, libraries) outside Flectra: do not use an URL to an image but copy
it in the codebase instead.
Concerning wizards, naming convention is the same of for python models:
<transient>.py
and <transient>_views.xml
. Both are put in the wizard
directory. This naming comes from old flectra applications using the wizard
keyword for transient models.
addons/plant_nursery/
|-- wizard/
| |-- make_plant_order.py
| |-- make_plant_order_views.xml
Concerning statistics reports done with python / SQL views and classic views naming is the following :
addons/plant_nursery/
|-- report/
| |-- plant_order_report.py
| |-- plant_order_report_views.xml
Concerning printable reports which contain mainly data preparation and Qweb templates naming is the following :
addons/plant_nursery/
|-- report/
| |-- plant_order_reports.xml (report actions, paperformat, ...)
| |-- plant_order_templates.xml (xml report templates)
The complete tree of our Flectra module therefore looks like
addons/plant_nursery/
|-- __init__.py
|-- __manifest__.py
|-- controllers/
| |-- __init__.py
| |-- plant_nursery.py
| |-- portal.py
|-- data/
| |-- plant_nursery_data.xml
| |-- plant_nursery_demo.xml
| |-- mail_data.xml
|-- models/
| |-- __init__.py
| |-- plant_nursery.py
| |-- plant_order.py
| |-- res_partner.py
|-- report/
| |-- __init__.py
| |-- plant_order_report.py
| |-- plant_order_report_views.xml
| |-- plant_order_reports.xml (report actions, paperformat, ...)
| |-- plant_order_templates.xml (xml report templates)
|-- security/
| |-- ir.model.access.csv
| |-- plant_nursery_groups.xml
| |-- plant_nursery_security.xml
| |-- plant_order_security.xml
|-- static/
| |-- img/
| | |-- my_little_kitten.png
| | |-- troll.jpg
| |-- lib/
| | |-- external_lib/
| |-- src/
| | |-- js/
| | | |-- widget_a.js
| | | |-- widget_b.js
| | |-- scss/
| | | |-- widget_a.scss
| | | |-- widget_b.scss
| | |-- xml/
| | | |-- widget_a.xml
| | | |-- widget_a.xml
|-- views/
| |-- assets.xml
| |-- plant_nursery_menus.xml
| |-- plant_nursery_views.xml
| |-- plant_nursery_templates.xml
| |-- plant_order_views.xml
| |-- plant_order_templates.xml
| |-- res_partner_views.xml
|-- wizard/
| |--make_plant_order.py
| |--make_plant_order_views.xml
Note
File names should only contain [a-z0-9_]
(lowercase
alphanumerics and _
)
Warning
Use correct file permissions : folder 755 and file 644.
XML files¶
Format¶
To declare a record in XML, the record notation (using <record>) is recommended:
Place
id
attribute beforemodel
For field declaration,
name
attribute is first. Then place the value either in thefield
tag, either in theeval
attribute, and finally other attributes (widget, options, …) ordered by importance.Try to group the record by model. In case of dependencies between action/menu/views, this convention may not be applicable.
Use naming convention defined at the next point
The tag <data> is only used to set not-updatable data with
noupdate=1
. If there is only not-updatable data in the file, thenoupdate=1
can be set on the<flectra>
tag and do not set a<data>
tag.
<record id="view_id" model="ir.ui.view">
<field name="name">view.name</field>
<field name="model">object_name</field>
<field name="priority" eval="16"/>
<field name="arch" type="xml">
<tree>
<field name="my_field_1"/>
<field name="my_field_2" string="My Label" widget="statusbar" statusbar_visible="draft,sent,progress,done" />
</tree>
</field>
</record>
Flectra supports custom tags acting as syntactic sugar:
menuitem: use it as a shortcut to declare a
ir.ui.menu
template: use it to declare a QWeb View requiring only the
arch
section of the view.report: use to declare a report action
act_window: use it if the record notation can’t do what you want
The 4 first tags are preferred over the record notation.
XML IDs and naming¶
Security, View and Action¶
Use the following pattern :
For a menu:
<model_name>_menu
, or<model_name>_menu_do_stuff
for submenus.For a view:
<model_name>_view_<view_type>
, where view_type iskanban
,form
,tree
,search
, …For an action: the main action respects
<model_name>_action
. Others are suffixed with_<detail>
, where detail is a lowercase string briefly explaining the action. This is used only if multiple actions are declared for the model.For window actions: suffix the action name by the specific view information like
<model_name>_action_view_<view_type>
.For a group:
<module_name>_group_<group_name>
where group_name is the name of the group, generally ‘user’, ‘manager’, …For a rule:
<model_name>_rule_<concerned_group>
where concerned_group is the short name of the concerned group (‘user’ for the ‘model_name_group_user’, ‘public’ for public user, ‘company’ for multi-company rules, …).
Name should be identical to xml id with dots replacing underscores. Actions should have a real naming as it is used as display name.
<!-- views -->
<record id="model_name_view_form" model="ir.ui.view">
<field name="name">model.name.view.form</field>
...
</record>
<record id="model_name_view_kanban" model="ir.ui.view">
<field name="name">model.name.view.kanban</field>
...
</record>
<!-- actions -->
<record id="model_name_action" model="ir.act.window">
<field name="name">Model Main Action</field>
...
</record>
<record id="model_name_action_child_list" model="ir.actions.act_window">
<field name="name">Model Access Childs</field>
</record>
<!-- menus and sub-menus -->
<menuitem
id="model_name_menu_root"
name="Main Menu"
sequence="5"
/>
<menuitem
id="model_name_menu_action"
name="Sub Menu 1"
parent="module_name.module_name_menu_root"
action="model_name_action"
sequence="10"
/>
<!-- security -->
<record id="module_name_group_user" model="res.groups">
...
</record>
<record id="model_name_rule_public" model="ir.rule">
...
</record>
<record id="model_name_rule_company" model="ir.rule">
...
</record>
Inheriting XML¶
Xml Ids of inheriting views should use the same ID as the original record. It helps finding all inheritance at a glance. As final Xml Ids are prefixed by the module that creates them there is no overlap.
Naming should contain an .inherit.{details}
suffix to ease understanding
the override purpose when looking at its name.
<record id="model_view_form" model="ir.ui.view">
<field name="name">model.view.form.inherit.module2</field>
<field name="inherit_id" ref="module1.model_view_form"/>
...
</record>
New primary views do not require the inherit suffix as those are new records based upon the first one.
<record id="module2.model_view_form" model="ir.ui.view">
<field name="name">model.view.form.module2</field>
<field name="inherit_id" ref="module1.model_view_form"/>
<field name="mode">primary</field>
...
</record>
Python¶
Warning
Do not forget to read the Security Pitfalls section as well to write secure code.
PEP8 options¶
Using a linter can help show syntax and semantic warnings or errors. Flectra source code tries to respect Python standard, but some of them can be ignored.
E501: line too long
E301: expected 1 blank line, found 0
E302: expected 2 blank lines, found 1
Imports¶
The imports are ordered as
External libraries (one per line sorted and split in python stdlib)
Imports of
flectra
Imports from Flectra modules (rarely, and only if necessary)
Inside these 3 groups, the imported lines are alphabetically sorted.
# 1 : imports of python lib
import base64
import re
import time
from datetime import datetime
# 2 : imports of flectra
import flectra
from flectra import api, fields, models, _ # alphabetically ordered
from flectra.tools.safe_eval import safe_eval as eval
# 3 : imports from flectra addons
from flectra.addons.website.models.website import slug
from flectra.addons.web.controllers.main import login_redirect
Idiomatics of Programming (Python)¶
Each python file should have
# -*- coding: utf-8 -*-
as first line.Always favor readability over conciseness or using the language features or idioms.
Don’t use
.clone()
# bad
new_dict = my_dict.clone()
new_list = old_list.clone()
# good
new_dict = dict(my_dict)
new_list = list(old_list)
Python dictionary : creation and update
# -- creation empty dict
my_dict = {}
my_dict2 = dict()
# -- creation with values
# bad
my_dict = {}
my_dict['foo'] = 3
my_dict['bar'] = 4
# good
my_dict = {'foo': 3, 'bar': 4}
# -- update dict
# bad
my_dict['foo'] = 3
my_dict['bar'] = 4
my_dict['baz'] = 5
# good
my_dict.update(foo=3, bar=4, baz=5)
my_dict = dict(my_dict, **my_dict2)
Use meaningful variable/class/method names
Useless variable : Temporary variables can make the code clearer by giving names to objects, but that doesn’t mean you should create temporary variables all the time:
# pointless
schema = kw['schema']
params = {'schema': schema}
# simpler
params = {'schema': kw['schema']}
Multiple return points are OK, when they’re simpler
# a bit complex and with a redundant temp variable
def axes(self, axis):
axes = []
if type(axis) == type([]):
axes.extend(axis)
else:
axes.append(axis)
return axes
# clearer
def axes(self, axis):
if type(axis) == type([]):
return list(axis) # clone the axis
else:
return [axis] # single-element list
Know your builtins : You should at least have a basic understanding of all the Python builtins (http://docs.python.org/library/functions.html)
value = my_dict.get('key', None) # very very redundant
value = my_dict.get('key') # good
Also, if 'key' in my_dict
and if my_dict.get('key')
have very different
meaning, be sure that you’re using the right one.
Learn list comprehensions : Use list comprehension, dict comprehension, and basic manipulation using
map
,filter
,sum
, … They make the code easier to read.
# not very good
cube = []
for i in res:
cube.append((i['id'],i['name']))
# better
cube = [(i['id'], i['name']) for i in res]
Collections are booleans too : In python, many objects have “boolean-ish” value when evaluated in a boolean context (such as an if). Among these are collections (lists, dicts, sets, …) which are “falsy” when empty and “truthy” when containing items:
bool([]) is False
bool([1]) is True
bool([False]) is True
So, you can write if some_collection:
instead of if len(some_collection):
.
Iterate on iterables
# creates a temporary list and looks bar
for key in my_dict.keys():
"do something..."
# better
for key in my_dict:
"do something..."
# accessing the key,value pair
for key, value in my_dict.items():
"do something..."
Use dict.setdefault
# longer.. harder to read
values = {}
for element in iterable:
if element not in values:
values[element] = []
values[element].append(other_value)
# better.. use dict.setdefault method
values = {}
for element in iterable:
values.setdefault(element, []).append(other_value)
As a good developer, document your code (docstring on methods, simple comments for tricky part of code)
In additions to these guidelines, you may also find the following link interesting: http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html (a little bit outdated, but quite relevant)
Programming in Flectra¶
Avoid to create generators and decorators: only use the ones provided by the Flectra API.
As in python, use
filtered
,mapped
,sorted
, … methods to ease code reading and performance.
Make your method work in batch¶
When adding a function, make sure it can process multiple records by iterating on self to treat each record.
def my_method(self)
for record in self:
record.do_cool_stuff()
For performance issue, when developing a ‘stat button’ (for instance), do not
perform a search
or a search_count
in a loop. It
is recommended to use read_group
method, to compute all value in only one request.
def _compute_equipment_count(self):
""" Count the number of equipment per category """
equipment_data = self.env['hr.equipment'].read_group([('category_id', 'in', self.ids)], ['category_id'], ['category_id'])
mapped_data = dict([(m['category_id'][0], m['category_id_count']) for m in equipment_data])
for category in self:
category.equipment_count = mapped_data.get(category.id, 0)
Propagate the context¶
The context is a frozendict
that cannot be modified. To call a method with
a different context, the with_context
method should be used :
records.with_context(new_context).do_stuff() # all the context is replaced
records.with_context(**additionnal_context).do_other_stuff() # additionnal_context values override native context ones
Warning
Passing parameter in context can have dangerous side-effects.
Since the values are propagated automatically, some unexpected behavior may appear.
Calling create()
method of a model with default_my_field key in context
will set the default value of my_field for the concerned model.
But if during this creation, other objects (such as sale.order.line, on sale.order creation)
having a field name my_field are created, their default value will be set too.
If you need to create a key context influencing the behavior of some object,
choice a good name, and eventually prefix it by the name of the module to
isolate its impact. A good example are the keys of mail
module :
mail_create_nosubscribe, mail_notrack, mail_notify_user_signature, …
Think extendable¶
Functions and methods should not contain too much logic: having a lot of small and simple methods is more advisable than having few large and complex methods. A good rule of thumb is to split a method as soon as it has more than one responsibility (see http://en.wikipedia.org/wiki/Single_responsibility_principle).
Hardcoding a business logic in a method should be avoided as it prevents to be easily extended by a submodule.
# do not do this
# modifying the domain or criteria implies overriding whole method
def action(self):
... # long method
partners = self.env['res.partner'].search(complex_domain)
emails = partners.filtered(lambda r: arbitrary_criteria).mapped('email')
# better but do not do this either
# modifying the logic forces to duplicate some parts of the code
def action(self):
...
partners = self._get_partners()
emails = partners._get_emails()
# better
# minimum override
def action(self):
...
partners = self.env['res.partner'].search(self._get_partner_domain())
emails = partners.filtered(lambda r: r._filter_partners()).mapped('email')
The above code is over extendable for the sake of example but the readability must be taken into account and a tradeoff must be made.
Also, name your functions accordingly: small and properly named functions are the starting point of readable/maintainable code and tighter documentation.
This recommendation is also relevant for classes, files, modules and packages. (See also http://en.wikipedia.org/wiki/Cyclomatic_complexity)
Never commit the transaction¶
The Flectra framework is in charge of providing the transactional context for all RPC calls. The principle is that a new database cursor is opened at the beginning of each RPC call, and committed when the call has returned, just before transmitting the answer to the RPC client, approximately like this:
def execute(self, db_name, uid, obj, method, *args, **kw):
db, pool = pooler.get_db_and_pool(db_name)
# create transaction cursor
cr = db.cursor()
try:
res = pool.execute_cr(cr, uid, obj, method, *args, **kw)
cr.commit() # all good, we commit
except Exception:
cr.rollback() # error, rollback everything atomically
raise
finally:
cr.close() # always close cursor opened manually
return res
If any error occurs during the execution of the RPC call, the transaction is rolled back atomically, preserving the state of the system.
Similarly, the system also provides a dedicated transaction during the execution of tests suites, so it can be rolled back or not depending on the server startup options.
The consequence is that if you manually call cr.commit()
anywhere there is
a very high chance that you will break the system in various ways, because you
will cause partial commits, and thus partial and unclean rollbacks, causing
among others:
inconsistent business data, usually data loss
workflow desynchronization, documents stuck permanently
tests that can’t be rolled back cleanly, and will start polluting the database, and triggering error (this is true even if no error occurs during the transaction)
- Here is the very simple rule:
You should NEVER call
cr.commit()
yourself, UNLESS you have created your own database cursor explicitly! And the situations where you need to do that are exceptional!And by the way if you did create your own cursor, then you need to handle error cases and proper rollback, as well as properly close the cursor when you’re done with it.
And contrary to popular belief, you do not even need to call cr.commit()
in the following situations:
- in the _auto_init()
method of an models.Model object: this is taken
care of by the addons initialization method, or by the ORM transaction when
creating custom models
- in reports: the commit()
is handled by the framework too, so you can
update the database even from within a report
- within models.Transient methods: these methods are called exactly like
regular models.Model ones, within a transaction and with the corresponding
cr.commit()/rollback()
at the end
- etc. (see general rule above if you have in doubt!)
All cr.commit()
calls outside of the server framework from now on must
have an explicit comment explaining why they are absolutely necessary, why
they are indeed correct, and why they do not break the transactions. Otherwise
they can and will be removed !
Use translation method correctly¶
Flectra uses a GetText-like method named “underscore” _( )
to indicate that
a static string used in the code needs to be translated at runtime using the
language of the context. This pseudo-method is accessed within your code by
importing as follows:
from flectra import _
A few very important rules must be followed when using it, in order for it to work and to avoid filling the translations with useless junk.
Basically, this method should only be used for static strings written manually in the code, it will not work to translate field values, such as Product names, etc. This must be done instead using the translate flag on the corresponding field.
The method accepts optional positional or named parameter
The rule is very simple: calls to the underscore method should always be in
the form _('literal string')
and nothing else:
# good: plain strings
error = _('This record is locked!')
# good: strings with formatting patterns included
error = _('Record %s cannot be modified!', record)
# ok too: multi-line literal strings
error = _("""This is a bad multiline example
about record %s!""", record)
error = _('Record %s cannot be modified' \
'after being validated!', record)
# bad: tries to translate after string formatting
# (pay attention to brackets!)
# This does NOT work and messes up the translations!
error = _('Record %s cannot be modified!' % record)
# bad: formatting outside of translation
# This won't benefit from fallback mechanism in case of bad translation
error = _('Record %s cannot be modified!') % record
# bad: dynamic string, string concatenation, etc are forbidden!
# This does NOT work and messes up the translations!
error = _("'" + que_rec['question'] + "' \n")
# bad: field values are automatically translated by the framework
# This is useless and will not work the way you think:
error = _("Product %s is out of stock!") % _(product.name)
# and the following will of course not work as already explained:
error = _("Product %s is out of stock!" % product.name)
# Instead you can do the following and everything will be translated,
# including the product name if its field definition has the
# translate flag properly set:
error = _("Product %s is not available!", product.name)
Also, keep in mind that translators will have to work with the literal values
that are passed to the underscore function, so please try to make them easy to
understand and keep spurious characters and formatting to a minimum. Translators
must be aware that formatting patterns such as %s
or %d
, newlines, etc.
need to be preserved, but it’s important to use these in a sensible and obvious
manner:
# Bad: makes the translations hard to work with
error = "'" + question + _("' \nPlease enter an integer value ")
# Ok (pay attention to position of the brackets too!)
error = _("Answer to question %s is not valid.\n" \
"Please enter an integer value.", question)
# Better
error = _("Answer to question %(title)s is not valid.\n" \
"Please enter an integer value.", title=question)
In general in Flectra, when manipulating strings, prefer %
over .format()
(when only one variable to replace in a string), and prefer %(varname)
instead
of position (when multiple variables have to be replaced). This makes the
translation easier for the community translators.
Symbols and Conventions¶
- Model name (using the dot notation, prefix by the module name) :
When defining an Flectra Model : use singular form of the name (res.partner and sale.order instead of res.partnerS and saleS.orderS)
When defining an Flectra Transient (wizard) : use
<related_base_model>.<action>
where related_base_model is the base model (defined in models/) related to the transient, and action is the short name of what the transient do. Avoid the wizard word. For instance :account.invoice.make
,project.task.delegate.batch
, …When defining report model (SQL views e.i.) : use
<related_base_model>.report.<action>
, based on the Transient convention.
Flectra Python Class : use camelcase (Object-oriented style).
class AccountInvoice(models.Model):
...
- Variable name :
use camelcase for model variable
use underscore lowercase notation for common variable.
suffix your variable name with _id or _ids if it contains a record id or list of id. Don’t use
partner_id
to contain a record of res.partner
Partner = self.env['res.partner']
partners = Partner.browse(ids)
partner_id = partners[0].id
One2Many
andMany2Many
fields should always have _ids as suffix (example: sale_order_line_ids)Many2One
fields should have _id as suffix (example : partner_id, user_id, …)- Method conventions
Compute Field : the compute method pattern is _compute_<field_name>
Search method : the search method pattern is _search_<field_name>
Default method : the default method pattern is _default_<field_name>
Selection method: the selection method pattern is _selection_<field_name>
Onchange method : the onchange method pattern is _onchange_<field_name>
Constraint method : the constraint method pattern is _check_<constraint_name>
Action method : an object action method is prefix with action_. Since it uses only one record, add
self.ensure_one()
at the beginning of the method.
- In a Model attribute order should be
Private attributes (
_name
,_description
,_inherit
, …)Default method and
_default_get
Field declarations
Compute, inverse and search methods in the same order as field declaration
Selection method (methods used to return computed values for selection fields)
Constrains methods (
@api.constrains
) and onchange methods (@api.onchange
)CRUD methods (ORM overrides)
Action methods
And finally, other business methods.
class Event(models.Model):
# Private attributes
_name = 'event.event'
_description = 'Event'
# Default methods
def _default_name(self):
...
# Fields declaration
name = fields.Char(string='Name', default=_default_name)
seats_reserved = fields.Integer(oldname='register_current', string='Reserved Seats',
store=True, readonly=True, compute='_compute_seats')
seats_available = fields.Integer(oldname='register_avail', string='Available Seats',
store=True, readonly=True, compute='_compute_seats')
price = fields.Integer(string='Price')
event_type = fields.Selection(string="Type", selection='_selection_type')
# compute and search fields, in the same order of fields declaration
@api.depends('seats_max', 'registration_ids.state', 'registration_ids.nb_register')
def _compute_seats(self):
...
@api.model
def _selection_type(self):
return []
# Constraints and onchanges
@api.constrains('seats_max', 'seats_available')
def _check_seats_limit(self):
...
@api.onchange('date_begin')
def _onchange_date_begin(self):
...
# CRUD methods (and name_get, name_search, ...) overrides
def create(self, values):
...
# Action methods
def action_validate(self):
self.ensure_one()
...
# Business methods
def mail_user_confirm(self):
...
Javascript and CSS¶
Static files organization¶
Flectra addons have some conventions on how to structure various files. We explain here in more details how web assets are supposed to be organized.
The first thing to know is that the Flectra server will serve (statically) all files located in a static/ folder, but prefixed with the addon name. So, for example, if a file is located in addons/web/static/src/js/some_file.js, then it will be statically available at the url your-flectra-server.com/web/static/src/js/some_file.js
The convention is to organize the code according to the following structure:
static: all static files in general
static/lib: this is the place where js libs should be located, in a sub folder. So, for example, all files from the jquery library are in addons/web/static/lib/jquery
static/src: the generic static source code folder
static/src/css: all css files
static/src/fonts
static/src/img
static/src/js
static/src/js/tours: end user tour files (tutorials, not tests)
static/src/scss: scss files
static/src/xml: all qweb templates that will be rendered in JS
static/tests: this is where we put all test related files.
static/tests/tours: this is where we put all tour test files (not tutorials).
Javascript coding guidelines¶
use strict;
is recommended for all javascript filesUse a linter (jshint, …)
Never add minified Javascript Libraries
Use camelcase for class declaration
More precise JS guidelines are detailed in the github wiki. You may also have a look at existing API in Javascript by looking Javascript References.
CSS coding guidelines¶
Prefix all your classes with o_<module_name> where module_name is the technical name of the module (‘sale’, ‘im_chat’, …) or the main route reserved by the module (for website module mainly, i.e. : ‘o_forum’ for website_forum module). The only exception for this rule is the webclient: it simply uses o_ prefix.
Avoid using id tag
Use Bootstrap native classes
Use underscore lowercase notation to name class
Git¶
Configure your git¶
Based on ancestral experience and oral tradition, the following things go a long way towards making your commits more helpful:
Be sure to define both the user.email and user.name in your local git config
git config --global <var> <value>
Be sure to add your full name to your Github profile here. Please feel fancy and add your team, avatar, your favorite quote, and whatnot ;-)
Commit message structure¶
Commit message has four parts: tag, module, short description and full description. Try to follow the preferred structure for your commit messages
[TAG] module: describe your change in a short sentence (ideally < 50 chars)
Long version of the change description, including the rationale for the change,
or a summary of the feature being introduced.
Please spend a lot more time describing WHY the change is being done rather
than WHAT is being changed. This is usually easy to grasp by actually reading
the diff. WHAT should be explained only if there are technical choices
or decision involved. In that case explain WHY this decision was taken.
End the message with references, such as task or bug numbers, PR numbers, and
OPW tickets, following the suggested format:
task-123 (related to task)
Fixes #123 (close related issue on Github)
Closes #123 (close related PR on Github)
opw-123 (related to ticket)
Tag and module name¶
Tags are used to prefix your commit. They should be one of the following
[FIX] for bug fixes: mostly used in stable version but also valid if you are fixing a recent bug in development version;
[REF] for refactoring: when a feature is heavily rewritten;
[ADD] for adding new modules;
[REM] for removing resources: removing dead code, removing views, removing modules, …;
[REV] for reverting commits: if a commit causes issues or is not wanted reverting it is done using this tag;
[MOV] for moving files: use git move and do not change content of moved file otherwise Git may loose track and history of the file; also used when moving code from one file to another;
[REL] for release commits: new major or minor stable versions;
[IMP] for improvements: most of the changes done in development version are incremental improvements not related to another tag;
[MERGE] for merge commits: used in forward port of bug fixes but also as main commit for feature involving several separated commits;
[CLA] for signing the Flectra Individual Contributor License;
[I18N] for changes in translation files;
After tag comes the modified module name. Use the technical name as functional name may change with time. If several modules are modified, list them or use various to tell it is cross-modules. Unless really required or easier avoid modifying code across several modules in the same commit. Understanding module history may become difficult.
Commit message header¶
After tag and module name comes a meaningful commit message header. It should be self explanatory and include the reason behind the change. Do not use single words like “bugfix” or “improvements”. Try to limit the header length to about 50 characters for readability.
Commit message header should make a valid sentence once concatenated with
if applied, this commit will <header>
. For example [IMP] base: prevent to
archive users linked to active partners
is correct as it makes a valid sentence
if applied, this commit will prevent users to archive...
.
Commit message full description¶
In the message description specify the part of the code impacted by your changes (module name, lib, transversal object, …) and a description of the changes.
First explain WHY you are modifying code. What is important if someone goes back to your commit in about 4 decades (or 3 days) is why you did it. It is the purpose of the change.
What you did can be found in the commit itself. If there was some technical choices involved it is a good idea to explain it also in the commit message after the why. For Flectra R&D developers “PO team asked me to do it” is not a valid why, by the way.
Please avoid commits which simultaneously impact multiple modules. Try to split into different commits where impacted modules are different. It will be helpful if we need to revert changes in a given module separately.
Don’t hesitate to be a bit verbose. Most people will only see your commit message and judge everything you did in your life just based on those few sentences. No pressure at all.
You spend several hours, days or weeks working on meaningful features. Take some time to calm down and write clear and understandable commit messages.
If you are an Flectra R&D developer the WHY should be the purpose of the task you are working on. Full specifications make the core of the commit message. If you are working on a task that lacks purpose and specifications please consider making them clear before continuing.
Finally here are some examples of correct commit messages :
[REF] models: use `parent_path` to implement parent_store
This replaces the former modified preorder tree traversal (MPTT) with the
fields `parent_left`/`parent_right`[...]
[FIX] account: remove frenglish
[...]
Closes #22793
Fixes #22769
[FIX] website: remove unused alert div, fixes look of input-group-btn
Bootstrap's CSS depends on the input-group-btn
element being the first/last child of its parent.
This was not the case because of the invisible
and useless alert.
Note
Use the long description to explain the why not the what, the what can be seen in the diff